Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 285
Filter
1.
2023 3rd International Conference on Advances in Electrical, Computing, Communication and Sustainable Technologies, ICAECT 2023 ; 2023.
Article in English | Scopus | ID: covidwho-20241222

ABSTRACT

Today it is observed that few people respect the biosecurity measures announced by the WHO, which aimed to reduce the amount of COVID-19 infection among people, even knowing that this virus has not disappeared from our environment, being an unprecedented infection in the world. It should be noted that before this pandemic, tuberculosis affected millions of people, having a great role because it is highly contagious and directly affects the lungs, although it has a cure, if it is not treated in time it can be fatal for the person, although there are many methods of detection of tuberculosis, one that is most often used is the diagnosis by chest x-ray, although it has low specificity, when the image processing technique is applied, tuberculosis would be accurately detected. In view of this problem, in this article a chest X-ray image processing system was conducted for the early detection of tuberculosis, helping doctors to detect tuberculosis accurately and quickly by having a second opinion by the system in the analysis of the chest x-ray, prevents fatal infections in patients. Through the development of the tuberculosis early detection system, it was possible to observe the correct functioning of the system with an efficiency of 97.84% in the detection of tuberculosis, detailing the characteristics presented by normal or abnormal images so that the doctor detects tuberculosis in the patient early. © 2023 IEEE.

2.
Proceedings of the 17th INDIACom|2023 10th International Conference on Computing for Sustainable Global Development, INDIACom 2023 ; : 413-417, 2023.
Article in English | Scopus | ID: covidwho-20240280

ABSTRACT

Convolutional neural network (CNN) is the most widely used structure-building technique for deep learning models. In order to classify chest x-ray pictures, this study examines a number of models, including VGG-13, AlexN ct, MobileNet, and Modified-DarkCovidNet, using both segmented image datasets and regular image datasets. Four types of chest X- images: normal chest image, Covid-19, pneumonia, and tuberculosis are used for classification. The experimental results demonstrate that the VGG offers the highest accuracy for segmented pictures and Modified Dark CovidN et performs best for multi class classification on segmented images. © 2023 Bharati Vidyapeeth, New Delhi.

3.
Proceedings of 2023 3rd International Conference on Innovative Practices in Technology and Management, ICIPTM 2023 ; 2023.
Article in English | Scopus | ID: covidwho-20239398

ABSTRACT

Recently, the COVID-19 pandemic has emerged as one of the world's most critical public health concerns. One of the biggest problems in the present COVID-19 outbreak is the difficulty of accurately separating COVID-19 cases from non-COVID-19 cases at an affordable price and in the initial stages. Besides the use of antigen Rapid Test Kit (RTK) and Reverse Transcription Polymerase Chain Reaction (RT-PCR), chest x-rays (CXR) can also be used to identify COVID-19 patients. Unfortunately, manual checks may produce inaccurate results, delay treatment or even be fatal. Because of differences in perception and experience, the manual method can be chaotic and imprecise. Technology has progressed to the point where we can solve this problem by training a Deep Learning (DL) model to distinguish the normal and COVID-19 X-rays. In this work, we choose the Convolutional Neural Network (CNN) as our DL model and train it using Kaggle datasets that include both COVID-19 and normal CXR data. The developed CNN model is then deployed on the website after going through a training and validation process. The website layout is straightforward to navigate. A CXR can be uploaded and a prediction made with minimal effort from the patient. The website assists in determining whether they have been exposed to COVID-19 or not. © 2023 IEEE.

4.
2023 3rd International Conference on Advances in Electrical, Computing, Communication and Sustainable Technologies, ICAECT 2023 ; 2023.
Article in English | Scopus | ID: covidwho-20237272

ABSTRACT

The Covid 19 pandemic that started a couple of years ago has had a devastating effect on mankind across the globe. The disease had no known treatment. Early detection and prevention was very important to curtail the effects of the Pandemic. In this work two deep learning models the RestNet and the models are proposed for diagnosing Corona from chest X-rays and CT scans. The models were trained with publicly available data sets of covid and non covid images. It has been found that Inception V3 performs better than ResNet for chest x-rays and RestNet performs better for CT Scans. The performance of the RestNet is found to be similar for both the chest x-rays and CT scans datasets. © 2023 IEEE.

5.
Indonesian Journal of Electrical Engineering and Computer Science ; 31(1):369-377, 2023.
Article in English | Scopus | ID: covidwho-20236593

ABSTRACT

Coronavirus often called COVID-19 is a deadly viral disease that causes as a result of severe acute respiratory syndrome coronavirus-2 that needs to be identified especially at its early stages, and failure of which can lead to the further spread of the virus. Despite with the huge success recorded towards the use of the original convolutional neural networks (CNN) of deep learning models. However, their architecture needs to be modified to design their modified versions that can have more powerful feature layer extractors to improve their classification performance. This research is aimed at designing a modified CNN of a deep learning model that can be applied to interpret X-rays to classify COVID-19 cases with improved performance. Therefore, we proposed a modified convolutional neural network (shortened as modification CNN) approach that uses X-rays to classify a COVID-19 case by combining VGG19 and ResNet50V2 along with putting additional dense layers to the combined feature layer extractors. The proposed modified CNN achieved 99.24%, 98.89%, 98.90%, 99.58%, and 99.23% of the overall accuracy, precision, specificity, sensitivity, and F1-Score, respectively. This demonstrates that the results of the proposed approach show a promising classification performance in the classification of COVID-19 cases. © 2023 Institute of Advanced Engineering and Science. All rights reserved.

6.
Progress in Biomedical Optics and Imaging - Proceedings of SPIE ; 12465, 2023.
Article in English | Scopus | ID: covidwho-20233626

ABSTRACT

Assessing the generalizability of deep learning algorithms based on the size and diversity of the training data is not trivial. This study uses the mapping of samples in the image data space to the decision regions in the prediction space to understand how different subgroups in the data impact the neural network learning process and affect model generalizability. Using vicinal distribution-based linear interpolation, a plane of the decision region space spanned by the random 'triplet' of three images can be constructed. Analyzing these decision regions for many random triplets can provide insight into the relationships between distinct subgroups. In this study, a contrastive self-supervised approach is used to develop a 'base' classification model trained on a large chest x-ray (CXR) dataset. The base model is fine-tuned on COVID-19 CXR data to predict image acquisition technology (computed radiography (CR) or digital radiography (DX) and patient sex (male (M) or female (F)). Decision region analysis shows that the model's image acquisition technology decision space is dominated by CR, regardless of the acquisition technology for the base images. Similarly, the Female class dominates the decision space. This study shows that decision region analysis has the potential to provide insights into subgroup diversity, sources of imbalances in the data, and model generalizability. © 2023 SPIE.

7.
AIP Conference Proceedings ; 2776, 2023.
Article in English | Scopus | ID: covidwho-20231983

ABSTRACT

The coronavirus has spread fast resulting in a worldwide pandemic. Early discovery of positive patients is critical in preventing the pandemic from spreading further, leading to the development of diagnostic technologies that provide rapid and reliable responses for COVID-19 detection. Previous research has shown that chest x-rays are an essential tool for the detection and diagnosis of sirivanoroC (COVID-19) patients. A radiological finding known as ground-glass opacity (GGO), which causes color and texture changes, was discovered in the lung of a person with COVID-19 as a consequence of x-ray tests. An automatic method to assist radiologists is required due to the carelessness of radiologists who work a long time and misdiagnosis resulting in the confusion of findings with different diseases, in this study, were described a new technique to help us with the early diagnosis of COVID-19 using x-rays that is based on fuzzy classification. The skewness, kurtosis, and average statistical features of x-rays of patients in two classes, COVID and Normal, are calculated in the suggested method, and the value ranges for both classes are identified. In the building of a fuzzy logic classifier, three statistical characteristics and value ranges are used as membership functions. The suggested solution, which uses a user-friendly interface, allows for quick and accurate COVID vs Normal (binary classification). Experiments show that our method has a lot of promise for radiologists to validate their initial screening and enhance early diagnosis, isolation, and therapy, which helps prevent infection and contain the pandemic. © 2023 Author(s).

8.
Multimed Syst ; : 1-10, 2021 Apr 28.
Article in English | MEDLINE | ID: covidwho-20235865

ABSTRACT

The demand for automatic detection of Novel Coronavirus or COVID-19 is increasing across the globe. The exponential rise in cases burdens healthcare facilities, and a vast amount of multimedia healthcare data is being explored to find a solution. This study presents a practical solution to detect COVID-19 from chest X-rays while distinguishing those from normal and impacted by Viral Pneumonia via Deep Convolution Neural Networks (CNN). In this study, three pre-trained CNN models (EfficientNetB0, VGG16, and InceptionV3) are evaluated through transfer learning. The rationale for selecting these specific models is their balance of accuracy and efficiency with fewer parameters suitable for mobile applications. The dataset used for the study is publicly available and compiled from different sources. This study uses deep learning techniques and performance metrics (accuracy, recall, specificity, precision, and F1 scores). The results show that the proposed approach produced a high-quality model, with an overall accuracy of 92.93%, COVID-19, a sensitivity of 94.79%. The work indicates a definite possibility to implement computer vision design to enable effective detection and screening measures.

9.
2023 International Conference on Advances in Electronics, Control and Communication Systems, ICAECCS 2023 ; 2023.
Article in English | Scopus | ID: covidwho-2324821

ABSTRACT

Image classification and segmentation techniques are still very popular in the medical field (for healthcare), in which the medical image plays an important role in the detection and screening of diseases. Recently, the spread of new viral diseases, namely Covid-19, requires powerful computer models and rich resources (datasets) to fight this phenomenon. In this study, we propose to examine the CNN Deep Learning algorithm and two Transfer Learning models, namely RestNet50 and MobileNetV2 using the pretrained model of the ImageNet database, experimented on the new dataset (COVID-QU-Ex Dataset 2022) offered by the University of Qatar. These models are tested to classify radiography images into two classes (Covid19 and Normal). The results achieved by CNN (Acc =95.97%), ResNet50 (Acc =95.53%) and MobileNetV2 (Acc =97.32%) show that these algorithms are promising in order to combat this Covid-19 disease by detecting it through thoracic images (Chest X-ray type). © 2023 IEEE.

10.
Biomedical Engineering-Applications Basis Communications ; 2023.
Article in English | Web of Science | ID: covidwho-2326336

ABSTRACT

Coronavirus Disease 2019 (COVID-19) is a terrible illness affecting the respiratory systems of animals and humans. By 2020, this sickness had become a pandemic, affecting millions worldwide. Prevention of the spread of the virus by conducting fast tests for many suspects has become difficult. Recently, many deep learning-based methods have been developed to automatically detect COVID-19 infection from lung Computed Tomography (CT) images of the chest. This paper proposes a novel dual-scale Convolutional Neural Network (CNN) architecture to detect COVID-19 from CT images. The network consists of two different convolutional blocks. Each path is similarly constructed with multi-scale feature extraction layers. The primary path consists of six convolutional layers. The extracted features from multipath networks are flattened with the help of dropout, and these relevant features are concatenated. The sigmoid function is used as the classifier to identify whether the input image is diseased. The proposed network obtained an accuracy of 99.19%, with an Area Under the Curve (AUC) value of 0.99. The proposed network has a lower computational cost than the existing methods regarding learnable parameters, the number of FLOPS, and memory requirements. The proposed CNN model inherits the benefits of densely linked paths and residuals by utilizing effective feature reuse methods. According to our experiments, the proposed approach outperforms previous algorithms and achieves state-of-the-art results.

11.
2023 IEEE International Conference on Integrated Circuits and Communication Systems, ICICACS 2023 ; 2023.
Article in English | Scopus | ID: covidwho-2325392

ABSTRACT

The examination of medical images has benefited greatly from the use of artificial intelligence. In contrast to deep learning systems, which do feature extraction automatically and without human interaction, traditional computer vision methods rely on manually produced features that are particular to a certain domain. Having access to medical information for automated analysis is another major factor driving the trend towards deep learning. Chest x-ray pictures are processed in order to segment the lungs and identify diseases in this thesis. Due to its cheap cost, ease of capture, and non-invasive nature, chest x-ray is the most often used medical imaging technology. However, automatic diagnosis in chest x-rays is difficult due to (1) the presence of the rib-cage and clavicle bones, which can obscure abnormalities that are located beneath them, and (2) the fuzzy intensity transitions near the lung and heart, dense abnormalities, rib-cages, and clavicle bones, which make the identification of lung contours subtle. In x-ray image processing, the Convolutional Neural Network (CNN) is the most often used deep learning architecture. Because to the enormous number of parameters in deep CNN architectures, intensive computing resources are required to train these models. Additionally, chest x-ray datasets are often rather tiny, and there is always the risk of overfitting when developing a model. In this dissertation, we propose five convolutional neural networks (CNNs) to identify illness and segment the lungs in chest x-rays. New Line, New Line In the first research paper, an adaptive lightweight convolutional neural network (ALCNN) is created to detect pneumothorax with few parameters. The model readjusts the feature calibration channel-wise using the convolutional layer and attention mechanism. The suggested model outperformed state-of-the-art deep models trained using three different transfer learning methods. One notable aspect of the suggested model is that it requires ten times less parameters than the best deep models currently available. The second paper suggests the FocusCovid methodology for identifying COVID-19. © 2023 IEEE.

12.
International Journal of Biometrics ; 15(3-4):459-479, 2023.
Article in English | ProQuest Central | ID: covidwho-2319199

ABSTRACT

COVID-19 is a pandemic and a highly contagious disease that can severely damage the respiratory organs. Tuberculosis is also one of the leading respiratory diseases that affect public health. While COVID-19 has pushed the world into chaos and tuberculosis is still a persistent problem in many countries. A chest X-ray can provide plethora of information regarding the type of disease and the extent of damage to the lungs. Since X-rays are widely accessible and can be used in the diagnosis of COVID-19 or tuberculosis, this study aims to leverage those property to classify them in the category of COVID-19 infected lungs, tuberculosis infected lungs or normal lungs. In this paper, an ensemble deep learning model consisting of pre-trained models for feature extraction is used along with machine learning classifiers to classify the X-ray images. Various ensemble models were implemented and highest achieved accuracy among them was observed as 93%.

13.
15th International Conference on Knowledge and Smart Technology, KST 2023 ; 2023.
Article in English | Scopus | ID: covidwho-2318489

ABSTRACT

Coronavirus disease (COVID-19) is a major pandemic disease that has already infected millions of people worldwide and affects many aspects, especially public health. There are many clinical techniques for the diagnosis of this disease, such as RT-PCR and CT-Scan. X-ray image is one of the important techniques for medical diagnosis and easily accessible in classifying suspected cases of COVID-19 infection. In this study, we classified COVID-19 images with four classes: COVID-19, Normal, Lung opacity and Viral pneumonia by compared three models: EfficientNetB0, MobileNet and GoogLeNet for the performance of classification using 1,000 chest X-ray images from Kaggle dataset within scenario of resource limitations. The experiment reveals that GoogLeNet shows superiority over other models that produced the highest accuracy results of 88% and F1 score of 0.88 with a total time of 1 hour and 15 minutes. Along with its confusion matrix that shows model can better classify images than other models. © 2023 IEEE.

14.
International Journal of Intelligent Systems ; 2023, 2023.
Article in English | ProQuest Central | ID: covidwho-2317458

ABSTRACT

In 2019, a deadly coronaviral infection (COVID-19) that infected millions of people globally was detected in China. This fatal virus affects the respiratory system and currently spreads to more than 200 nations worldwide. COVID-19 may be found using a chest X-ray scan, a reliable imaging method. Although an expert may examine an X-ray scan manually, this process takes a lot of time. Therefore, deep convolutional neural networks (CNNs) may be utilized to automate this procedure. In this work, at the first step, a novel isolated 19-layer CNN model is developed from scratch to detect chest infections using X-rays. Then, the developed model is reutilized to distinguish the type of chest infection, such as COVID-19, fibrosis, pneumonia, and tuberculosis, using the transfer learning approach. Stochastic gradient descent with momentum is utilized to optimize the model. The proposed multistage framework shows 98.85% and 97% classification accuracies for chest infection detection (binary classification between normal and patient) and four-class subclassification (COVID-19, fibrosis, pneumonia, and tuberculosis) for an online chest X-ray dataset. The reliability of the proposed multistage CNN model was further validated through a new dataset, showing an accuracy of 98.5%. The proposed multistage methodology took minimal training time compared to publically available pretrained models. Therefore, the presented multistage deep learning framework can help doctors in clinical practices.

15.
International Journal on Recent and Innovation Trends in Computing and Communication ; 11(3):43-50, 2023.
Article in English | Scopus | ID: covidwho-2312532

ABSTRACT

Early detection of COVID-19 may help medical expert for proper treatment plan and infection control. Internet of Things (IoT) has vital improvement in many areas including medical field. Deep learning also provide tremendous improvement in the field of medical. We have proposed a Transfer learning based deep learning model with medical Internet of Things for predicting COVID-19 from X-ray images. In the proposed method, the X ray images of patient are stored in cloud storage using internet for wide access. Then, the images are retrieved from cloud and Transfer learning based deep learning models namely VGG-16, Inception, Alexnet, Googlenet and Convolution neural Network models are applied on the X-rays images for predicting COVID 19, Normal and pneumonia classes. The pre-trained models helps to the effectiveness of deep learning accuracy and reduced the training time. The experimental analysis show that VGG -16 model gives accuracy of 99% for detecting COVID19 than other models. © 2023 Sunarno Basuki and Perdinanto.

16.
Healthcare (Basel) ; 11(9)2023 Apr 22.
Article in English | MEDLINE | ID: covidwho-2312455

ABSTRACT

Diagnostic and predictive models of disease have been growing rapidly due to developments in the field of healthcare. Accurate and early diagnosis of COVID-19 is an underlying process for controlling the spread of this deadly disease and its death rates. The chest radiology (CT) scan is an effective device for the diagnosis and earlier management of COVID-19, meanwhile, the virus mainly targets the respiratory system. Chest X-ray (CXR) images are extremely helpful in the effective diagnosis of COVID-19 due to their rapid outcomes, cost-effectiveness, and availability. Although the radiological image-based diagnosis method seems faster and accomplishes a better recognition rate in the early phase of the epidemic, it requires healthcare experts to interpret the images. Thus, Artificial Intelligence (AI) technologies, such as the deep learning (DL) model, play an integral part in developing automated diagnosis process using CXR images. Therefore, this study designs a sine cosine optimization with DL-based disease detection and classification (SCODL-DDC) for COVID-19 on CXR images. The proposed SCODL-DDC technique examines the CXR images to identify and classify the occurrence of COVID-19. In particular, the SCODL-DDC technique uses the EfficientNet model for feature vector generation, and its hyperparameters can be adjusted by the SCO algorithm. Furthermore, the quantum neural network (QNN) model can be employed for an accurate COVID-19 classification process. Finally, the equilibrium optimizer (EO) is exploited for optimum parameter selection of the QNN model, showing the novelty of the work. The experimental results of the SCODL-DDC method exhibit the superior performance of the SCODL-DDC technique over other approaches.

17.
International Journal of Ambient Computing and Intelligence ; 13(1), 2022.
Article in English | Scopus | ID: covidwho-2293846

ABSTRACT

The coronavirus (COVID-19) pandemic was rapid in its outbreak, and the contagion of the virus led to an extensive loss of life globally. This study aims to propose an efficient and reliable means to differentiate between chest x-rays indicating COVID-19 and other lung conditions. The proposed methodology involved combining deep learning techniques such as data augmentation, CLAHE image normalization, and transfer learning with eight pre-trained networks. The highest performing networks for binary, 3-class (normal vs. COVID-19 vs. viral pneumonia) and 4-class classifications (normal vs. COVID-19 vs. lung opacity vs. viral pneumonia) were MobileNetV2, InceptionResNetV2, and MobileNetV2, achieving accuracies of 97.5%, 96.69%, and 92.39%, respectively. These results outperformed many state-of-the-art methods conducted to address the challenges relating to the detection of COVID-19 from chest x-rays. The method proposed can serve as a basis for a computer-aided diagnosis (CAD) system to ensure that patients receive timely and necessary care for their respective illnesses. Copyright © 2022, IGI Global.

18.
Applied Sciences ; 13(8):5000, 2023.
Article in English | ProQuest Central | ID: covidwho-2305863

ABSTRACT

To assess the impact of the relative displacement between machines and subjects, the machine angle and the fine-tuning of the subject posture on the segmentation accuracy of chest X-rays, this paper proposes a Position and Direction Network (PDNet) for chest X-rays with different angles and positions that provides more comprehensive information for cardiac image diagnosis and guided surgery. The implementation of PDnet was as follows: First, the extended database image was sent to a traditional segmentation network for training to prove that the network does not have linear invariant characteristics. Then, we evaluated the performance of the mask in the middle layers of the network and added a weight mask that identifies the position and direction of the object in the middle layer, thus improving the accuracy of segmenting targets at different positions and angles. Finally, the active-shape model (ASM) was used to postprocess the network segmentation results, allowing the model to be effectively applied to 2014 × 2014 or higher definition chest X-rays. The experimental comparison of LinkNet, ResNet, U-Net, and DeepLap networks before and after the improvement shows that its segmentation accuracy (MIoU) are 5%, 6%, 20%, and 13% better. Their differences of losses are 11.24%, 21.96%, 18.53%, and 13.43% and F-scores also show the improved networks are more stable.

19.
2022 IEEE International Conference on Current Development in Engineering and Technology, CCET 2022 ; 2022.
Article in English | Scopus | ID: covidwho-2301579

ABSTRACT

A new coronavirus that caused the Covid-19 sickness, has already elevated the threat to humans. The virus is quickly spreading around the planet. Therefore, in order to detect sick individuals and stop the infection from spreading, it is vital that we develop fast diagnostic tests. The advancement of machine learning would make it possible to implement pre- ventative actions as soon as possible by enabling early detection of Covid19. However, insufficient sample sizes, particularly chestX-ray pictures, has made it more challenging to diagnose this ailment. In this study, we examined a number of these recently created transfer learning-based CNN models that can identify COVID-19 in lung CT or images of X-ray to diagnose Covid-19 using images of X-ray. We gathered data on the research resources that are readily available. We looked into and examined datasets, pre-processing methods, segmentation approaches, extraction of features, classification, and experimentation outcomes that could be useful for determining future research paths in the area of applying transfer learning based CNN models to diagnose COVID-19 disease. We have analyzed various models such as ResNet50, DenseNet-21, VGG-16, ImageNet, and some hybrid models and evaluated their performance matrix with a particular set of data used in their research work. Additionally, in orderfor a model to perform at its best, it is observed that there aren't enough data sets of COVID-19-infected individuals. This calls for augmentation, segmentation, and domain adaptation in transfer learning. © 2022 IEEE.

20.
Omics Approaches and Technologies in COVID-19 ; : 255-273, 2022.
Article in English | Scopus | ID: covidwho-2300850

ABSTRACT

The COVID-19 pandemic has taken the world by storm, placing healthcare systems around the globe under immense pressure. The exceptional circumstance has made the scientific community turn to artificial intelligence (AI), with hopes that AI techniques can be used in all aspects of combating the pandemic, whether it is in using AI to uncover sequences in the genomic code of the severe acute respiratory syndrome coronavirus (SARS-CoV-2) virus for the purposes of developing therapeutics, such as antivirals, antibodies, or vaccines, or using AI to provide (near-) instantaneous clinical diagnosis techniques by way of analysis of chest X-ray (CXR) images, computed tomography (CT) scans or other useful modalities, or using AI for as a tool for mass population testing by analyzing patient audio recordings. In this chapter, we survey the AI research literature with respect to applications for COVID-19 and showcase and critique notable state of the art approaches. © 2023 Elsevier Inc. All rights reserved.

SELECTION OF CITATIONS
SEARCH DETAIL